Getting Started With Python Dictionaries | ||||||||||||||||
a dictionary is a mutable collection of key-value pairs the globals() function returns a dictionary containing key-value pairs which map names to objects in the current global scope >>> globals() { '__name__': '__main__', '__doc__': None, '__package__': None, ... }dictionaries are used to support the internal implementation of classes >>> class Number: ... def __init__(self, value): ... self.value = value ... >>> Number(42).__dict__ {'value': 42}the .__dict__ special attribute is a dictionary which maps attribute names to their corresponding values in classes and objects this implementation makes attribute and method lookup fast and efficient in object-oriented code dictionaries have the following characteristics
can be of any Python type |
||||||||||||||||
Creating Dictionaries in Python | ||||||||||||||||
Dictionary Literals
syntax for a dictionary literal
{ <key_1>: <value_1>, <key_2>: <value_2>, ..., <key_N>: <value_N>, }can create empty dictionary using just curly braces d = {}keys must be hashable immutable types are hashable mutable types are not hashable can even use objects like data types and functions as keys >>> types = {int: 1, float: 2, bool: 3} >>> types {<class 'int'>: 1, <class 'float'>: 2, <class 'bool >: 3} >>> types[float] 2 >>> types[bool] 3 The dict() Constructor
c'tor signatures
dict() dict(**kwargs) dict(mapping, **kwargs) dict(iterable, **kwargs)if the keys are strings they can be specified as keyword args >>> MLB_teams = dict( ... Colorado="Rockies", ... Chicago="White Sox", ... Boston="Red Sox", ... Minnesota="Twins", ... Milwaukee="Brewers", ... Seattle="Mariners", ... )can also create a dictionary from an iterable of key-value pairs >>> MLB_teams = dict( ... [ ... ("Colorado", "Rockies"), ... ("Chicago", "White Sox"), ... ("Boston", "Red Sox"), ... ("Minnesota", "Twins"), ... ("Milwaukee", "Brewers"), ... ("Seattle", "Mariners"), ... ] ... )to create dictionaries from sequences of values combine them with the built-in zip() function and then call dict() >>> places = [ ... "Colorado", ... "Chicago", ... "Boston", ... "Minnesota", ... "Milwaukee", ... "Seattle", ... ] >>> teams = [ ... "Rockies", ... "White Sox", ... "Red Sox", ... "Twins", ... "Brewers", ... "Mariners", ... ] >>> dict(zip(places, teams)) { 'Colorado': 'Rockies', 'Chicago': 'White Sox', 'Boston': 'Red Sox', 'Minnesota': 'Twins', 'Milwaukee': 'Brewers', 'Seattle': 'Mariners' }the zip() function takes one or more iterables as arguments returns tuples that combine items from each iterable Using the .fromkeys() Class Method
the dict data type has a class method named .fromkeys()create new dictionaries from an iterable of keys and a default value the method's signature .fromkeys(iterable, value=None, /)example >>>inventory = dict.fromkeys(["apple", "orange", "banana", "mango"], 0) >>>inventory {'apple': 0, 'orange': 0, 'banana': 0, 'mango': 0} |
||||||||||||||||
Accessing Dictionary Values | ||||||||||||||||
can access its content by keys to retrieve a value from a dictionary >>>MLB_teams = dict( ... [ ... ("Colorado", "Rockies"), ... ("Chicago", "White Sox"), ... ("Boston", "Red Sox"), ... ("Minnesota", "Twins"), ... ("Milwaukee", "Brewers"), ... ("Seattle", "Mariners"), ... ] ... ) >>>MLB_teams["Minnesota"] 'Twins' >>>MLB_teams["Colorado"] 'Rockies'trying to access a key that doesn't exist raises a KeyError exception >>>person = { ... "first_name": "John", ... "last_name": "Doe", ... "age": 35, ... "spouse": "Jane", ... "children": ["Ralph", "Betty", "Bob"], ... "pets": {"dog": "Frieda", "cat": "Sox"}, ... }dictionary contains a list and dictionary as part of its values to access the nested list elements, can use the corresponding key and then the desired index to access a key-value pair in a nested dictionary, you can use the outer key and then the inner key >>>person["children"][0] 'Ralph' >>>person["children"][2] 'Bob' >>>person["pets"]["dog"] 'Frieda' >>>person["pets"]["cat"] 'Sox' |
||||||||||||||||
Populating Dictionaries Incrementally | ||||||||||||||||
Assigning Keys Manually
create an empty dictionary with an empty pair of curly bracesthen add new key-value pairs one at a time >>>person = {} >>>person["first_name"] = "John" >>>person["last_name"] = "Doe" >>>person["age"] = 35 >>>person["spouse"] = "Jane" >>>person["children"] = ["Ralph", "Betty", "Bob"] >>>person["pets"] = {"dog": "Frieda", "cat": "Sox"} >>>person { 'first_name': 'John', 'last_name': 'Doe', 'age': 35, 'spouse': 'Jane', 'children': ['Ralph', 'Betty', 'Bob'], 'pets': {'dog': 'Frieda', 'cat': 'Sox'} } Adding Keys in a for Loop
a for loop is a good approach for populating an empty dictionary with new data
>>>squares = {} >>>for integer in range(1, 10): ... squares[integer] = integer**2 ... >>>squares {1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81} Building Dictionaries With Comprehensions
can create the square dictionary with a comprehension
>>>squares = {integer: integer**2 for integer in range(1, 10)} >>>squares {1: 1, 2: 4, 3: 9, 4: 16, 5: 25, 6: 36, 7: 49, 8: 64, 9: 81} |
||||||||||||||||
Exploring the dict Class Methods | ||||||||||||||||
Retrieving Data From Dictionaries
the .items() method returns a dictionary view containing tuples of keys and valuesthe first item in each tuple is the key the second item is the associated value >>>inventory = {"apple": 100, "orange": 80, "banana": 100} >>>inventory.items() dict_items([('apple', 100), ('orange', 80), ('banana', 100)]) Adding Key-Value Pairs and Updating Dictionaries
the .setdefault() method can set default values to keysif key is in the dictionary, then the method returns the associated value if key isn't in the dictionary, it's inserted with default as its associated value returns default value None >>>inventory = {"apple": 100, "orange": 80} >>>inventory.setdefault("apple") 100 >>>print(inventory.setdefault("mango")) None >>>inventory {'apple': 100, 'orange': 80, 'mango': None} >>>inventory.setdefault("banana", 0) 0 >>>inventory {'apple': 100, 'orange': 80, 'mango': None, 'banana': 0}the .update() method merges a dictionary with another dictionary or with an iterable of key-value pairs if other is a dictionary, then a_dict.update(other) merges the entries from other into a_dict
>>>config = { ... "color": "green", ... "width": 42, ... "height": 100, ... "font": "Courier", ... } >>>user_config = { ... "path": "/home", ... "color": "red", ... "font": "Arial", ... "position": (200, 100), ... } >>>config.update(user_config) >>>config { 'color': 'red', 'width': 42, 'height': 100, 'font': 'Arial', 'path': '/home', 'position': (200, 100) }the argument may also be a sequence of key-value pairs >>> config.update([("width", 200), ("api_key", 1234)]) >>> config { 'color': 'red', 'width': 200, 'height': 100, 'font': 'Arial', 'path': '/home', 'position': (200, 100), 'api_key': 1234 }can also call .update() with keyword arguments >>> config.update(color="yellow", script="__main__.py") >>> config { 'color': 'yellow', 'width': 200, 'height': 100, 'font': 'Arial', 'path': '/home', 'position': (200, 100), 'api_key': 1234, 'script': '__main__.py' } Removing Data From Dictionaries
the .pop() method removes key-value pairs by keysif the key exists, the method returns its associated value associated value can be None if the key doesn't exist and default isn't provided, a KeyError is raised >>> inventory = {"apple": 100, "orange": 80, "banana": 100} >>> inventory.pop("apple") 100 >>> inventory {'orange': 80, 'banana': 100} >>> inventory.pop("mango") Traceback (most recent call last): ... KeyError: 'mango' >>> inventory.pop("mango", 0) 0to just delete an item >>> del inventory["banana"] >>> inventory {'orange': 80}the .popitem() method removes a key-value pair from a dictionary method returns the removed pair as a tuple of the form (key, value) the pairs are removed in LIFO (last-in, first-out) order if the dictionary is empty, then .popitem() raises a KeyError exception >>> inventory = {"apple": 100, "orange": 80, "banana": 100} >>> inventory.popitem() ('banana', 100) >>> inventory {'apple': 100, 'orange': 80} >>> inventory.popitem() ('orange', 80) >>> inventory {'apple': 100} >>> inventory.popitem() ('apple', 100) >>> inventory {}calling the .clear() method on an existing dictionary will remove all the current key-value pairs >>> inventory = {"apple": 100, "orange": 80, "banana": 100} >>> inventory {'apple': 100, 'orange': 80, 'banana': 100} >>> inventory.clear() >>> inventory {} |
||||||||||||||||
Using Operators With Dictionaries | ||||||||||||||||
Membership: in and not in
the membership operators in and not in allow determining whether a given key, value, or
item is in a dictionary
Equality and Inequality: == and !=
the equality (==) and inequality (!=) operators work with dictionariesthese operators disregard element order when used with dictionaries which is different from what happens with lists >>> [1, 2, 3] == [3, 2, 1] False >>> {1: 1, 2: 2, 3: 3} == {3: 3, 2: 2, 1: 1} True >>> [1, 2, 3] != [3, 2, 1] True >>> {1: 1, 2: 2, 3: 3} != {3: 3, 2: 2, 1: 1} Falsewhen comparing a list using the equality operator, the result depends on both the content and the order comparing two dictionaries that contain the same series of key-value pairs, the order of those pairs isn't considered the inequality operator when used with dictionaries doesn't consider the order of pairs either Union and Augmented Union: | and |=
The union operator (|) creates a new dictionary by merging the keys and values
of two initial dictionariesthe values of the dictionary to the right of the operator take precedence when both dictionaries share keys >>> default_config = { ... "color": "green", ... "width": 42, ... "height": 100, ... "font": "Courier", ... } >>> user_config = { ... "path": "/home", ... "color": "red", ... "font": "Arial", ... "position": (200, 100), ... } >>> config = default_config | user_config >>> config { 'color': 'red', 'width': 42, 'height': 100, 'font': 'Arial', 'path': '/home', 'position': (200, 100) }the augmented union operator (|=) updates an existing dictionary with key-value pairs from another dictionary, mapping, or iterable of key-value pairs does not create a new dictionary when the operands share keys, the values from the right-hand side operand take priority >>> config = { ... "color": "green", ... "width": 42, ... "height": 100, ... "font": "Courier", ... } >>> user_config = { ... "path": "/home", ... "color": "red", ... "font": "Arial", ... "position": (200, 100), ... } >>> config |= user_config >>> config { 'color': 'red', 'width': 42, 'height': 100, 'font': 'Arial', 'path': '/home', 'position': (200, 100) } |
||||||||||||||||
Use Built-in Functions With Dictionaries | ||||||||||||||||
Checking for Truthy Data in Dictionaries: all() and any()
have a dictionary which maps products to their amountswant to know whether all of the products are stocked can use the all() function with the dictionary values as a target >>> inventory = {"apple": 100, "orange": 80, "banana": 100, "mango": 200} >>> all(inventory.values()) True >>> # Update the stock >>> inventory["mango"] = 0 >>> all(inventory.values()) Falsewant to schedule interviews with candidates who meet any of the following criteria
# recruit_developer.py def schedule_interview(applicant): print(f"Scheduled interview with {applicant['name']}") applicants = [ { "name": "Devon Smith", "programming_languages": ["c++", "ada"], "years_of_experience": 1, "has_degree": False, "email_address": "[email protected]", }, { "name": "Susan Jones", "programming_languages": ["python", "javascript"], "years_of_experience": 2, "has_degree": False, "email_address": "[email protected]", }, { "name": "Sam Hughes", "programming_languages": ["java"], "years_of_experience": 4, "has_degree": True, "email_address": "[email protected]", }, ] for applicant in applicants: knows_python = "python" in applicant["programming_languages"] experienced_dev = applicant["years_of_experience"] >= 5 meets_criteria = ( knows_python or experienced_dev or applicant["has_degree"] ) if meets_criteria: schedule_interview(applicant)example using any() for applicant in applicants: knows_python = "python" in applicant["programming_languages"] experienced_dev = applicant["years_of_experience"] >= 5 credentials = ( knows_python, experienced_dev, applicant["has_degree"], ) if any(credentials): schedule_interview(applicant) Determining the Number of Dictionary Items: len()
when calling len() with a dictionary as an argument, the function returns the number
of items in the dictionary
Finding Minimum and Maximum Values: min() and max()
>>> computer_parts = { ... "CPU": 299.99, ... "Motherboard": 149.99, ... "RAM": 89.99, ... "GPU": 499.99, ... "SSD": 129.99, ... "Power Supply": 79.99, ... "Case": 99.99, ... "Cooling System": 59.99, ... } >>> min(computer_parts.values()) 59.99 >>> max(computer_parts.values()) 499.99computer_parts.values() contains the prices can also use the functions with dictionary keys and items these functions are mostly used with numeric values Sorting Dictionaries by Keys, Values, and Items: sorted()
Sorting a Dictionary
Summing Dictionary Values: sum()
can use the sum() function with dictionariesuse the function to sum up numeric dictionary values or keys >>> daily_sales = { ... "Monday": 1500, ... "Tuesday": 1750, ... "Wednesday": 1600, ... "Thursday": 1800, ... "Friday": 2000, ... "Saturday": 2200, ... "Sunday": 2100, ... } >>> sum(daily_sales.values()) / len(daily_sales) 1850.0 |
||||||||||||||||
Iterating Over Dictionaries | ||||||||||||||||
Traversing Dictionaries by Keys
can iterate over the keys of a dictionary either with the dictionary directly or
the .keys() method
>>> students = { ... "Alice": 89.5, ... "Bob": 76.0, ... "Charlie": 92.3, ... "Diana": 84.7, ... "Ethan": 88.9, ... "Fiona": 95.6, ... "George": 73.4, ... "Hannah": 81.2, ... } >>> for student in students: ... print(student) ... Alice Bob Charlie Diana Ethan Fiona George Hannah >>> for student in students.keys(): ... print(student) ... Alice Bob Charlie Diana Ethan Fiona George Hannah Iterating Over Dictionary Values
can use the .values() method
>>> MLB_teams = { ... "Colorado": "Rockies", ... "Chicago": "White Sox", ... "Boston": "Red Sox", ... "Minnesota": "Twins", ... "Milwaukee": "Brewers", ... "Seattle": "Mariners", ... } >>> for team in MLB_teams.values(): ... print(team) ... Rockies White Sox Red Sox Twins Brewers Marinerscan't access the keys when using .values() Looping Through Dictionary Items
use the .items() method>>> for place, team in MLB_teams.items(): ... print(place, "->", team) ... Colorado -> Rockies Chicago -> White Sox Boston -> Red Sox Minnesota -> Twins Milwaukee -> Brewers Seattle -> Mariners |
||||||||||||||||
Exploring Existing Dictionary-Like Classes | ||||||||||||||||
these classes and a few others are available in the collections module
|
||||||||||||||||
Creating Custom Dictionary-Like Classes | ||||||||||||||||
inherit from
it can work in situations where add functionality is wanted which doesn't imply changing the core functionality of dict the second approach is more reliable and safe can use it in most cases create a dictionary-like class that has in-place sorting capabilities class SortableDict(dict): def sort_by_keys(self, reverse=False): sorted_items = sorted( self.items(), key=lambda item: item[0], reverse=reverse ) self.clear() self.update(sorted_items) def sort_by_values(self, reverse=False): sorted_items = sorted( self.items(), key=lambda item: item[1], reverse=reverse ) self.clear() self.update(sorted_items)inherits from the built-in dict class added two new methods for sorting the dictionary by keys and values in place these methods don't create a new dictionary object but modify the current one output >>> from sorted_dict import SortableDict >>> students = SortableDict( ... { ... "Alice": 89.5, ... "Bob": 76.0, ... "Charlie": 92.3, ... "Diana": 84.7, ... "Ethan": 88.9, ... "Fiona": 95.6, ... "George": 73.4, ... "Hannah": 81.2, ... } ... ) >>> id(students) 4350960304 >>> students.sort_by_values(reverse=True) >>> students { 'Fiona': 95.6, 'Charlie': 92.3, 'Alice': 89.5, 'Ethan': 88.9, 'Diana': 84.7, 'Hannah': 81.2, 'Bob': 76.0, 'George': 73.4 } >>> students.sort_by_keys() >>> students { 'Alice': 89.5, 'Bob': 76.0, 'Charlie': 92.3, 'Diana': 84.7, 'Ethan': 88.9, 'Fiona': 95.6, 'George': 73.4, 'Hannah': 81.2 } >>> id(students) 4350960304create an instance of SortableDict call the .sort_by_values() method to sort the dictionary by grades in reverse order call the .sort_by_keys() method to sort the dictionary alphabetically by student names both methods modify the dictionary in-place |