Python's Built-in round() Function | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Python has a built-in round() function takes two numeric arguments n and ndigits returns the number n rounded to ndigits the ndigits argument defaults to zero leaving ndigits out results in a number rounded to an integer >>>round(2.5) 2 >>>round(1.5) 2 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Basic but Biased Rounding Strategies | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Truncating
the simplest, albeit crudest, method for rounding a number is to truncate the number
to a given number of digitswhen truncating a number, replace each digit after a given position with 0
def truncate(n, decimals=0): multiplier = 10**decimals return int(n * multiplier) / multipliermultiplies the decimals arg by 10 to shift the decimal point one place to the right takes the integer part of that new number with int() shifts the decimal place one place back to the left by dividing by 10 the truncate() function works well for both positive and negative numbers >>> from rounding import truncate >>> truncate(12.5) 12.0 >>> truncate(-5.963, 1) -5.9 >>> truncate(1.625, 2) 1.62 >>> truncate(125.6, -1) 120.0 >>> truncate(-1374.25, -3) -1000.0truncate a positive number and it's being rounding down truncate a negative number and it's being rounds up Rounding Up
rounding up strategy always rounds a number up to a specified number of digits
ceiling describes the nearest integer which is greater than or equal to a given number >>> import math >>> math.ceil(3.7) 4 >>> math.ceil(2) 2 >>> math.ceil(-0.5) 0round_up() looks a lot like truncate() import math def round_up(n, decimals=0): multiplier = 10**decimals return math.ceil(n * multiplier) / multipliercan pass a negative value to decimals >>> round_up(22.45, -1) 30.0 >>> round_up(1352, -2) 1400.0 Rounding Down
rounding down strategy rounds a number down to a specified number of digits
>>> import math >>> math.floor(1.2) 1 >>> math.floor(-0.5) -1the definition of round_down() # ... def round_down(n, decimals=0): multiplier = 10**decimals return math.floor(n * multiplier) / multiplierlooks just like round_up() except math.ceil() is replaced with math.floor() >>> from rounding import round_down >>> round_down(1.5) 1.0 >>> round_down(1.37, 1) 1.3 >>> round_down(-0.5) -1.0 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Interlude: Rounding Bias | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
an important aspect of rounding is symmetry around zero a function f(x) is symmetric around zero if, for all values of x, f(x) + f(-x) = 0 neither round_up() or round_down() functions are symmetric truncate() is symmetric around zero rounding bias describes how rounding affects numeric data in a dataset the rounding up strategy has a round toward positive infinity bias the rounding down strategy has a round toward negative infinity bias the truncation strategy exhibits a round toward negative infinity bias on positive values and a round toward positive infinity for negative values this behavior are said to have a round toward zero bias import statistics from rounding import truncate, round_up, round_down numbers = [1.25, -2.67, 0.43, -1.79, 8.19, -4.32] statistics.mean(numbers) #0.18166666666666653 [truncate(n, 1) for n in numbers] # [1.2, -2.6, 0.4, -1.7, 8.1, -4.3] statistics.mean(truncate(n, 1) for n in numbers) # 0.1833333333333333 statistics.mean(round_up(n, 1) for n in numbers) # 0.23333333333333325 statistics.mean(round_down(n, 1) for n in numbers) # 0.13333333333333316the results illustrate is the effect that rounding bias has on values computed from data which has been rounded when rounding should be interested in rounding to the nearest number with some specified precision |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Better Rounding Strategies in Python | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rounding Half Up
the rounding half up strategy rounds every number to the nearest number
with the specified precision and breaks ties by rounding up
# ... def round_half_up(n, decimals=0): multiplier = 10**decimals return math.floor(n * multiplier + 0.5) / multiplierinternally round_half_up() only rounds down adding the 0.5 after shifting the decimal point so that the result of rounding down matches the expected value Rounding Half Down
the rounding half down strategy rounds to the nearest number with the
desired precisionbreaks ties by rounding to the lesser of the two numbers
differences
# ... def round_half_down(n, decimals=0): multiplier = 10**decimals return math.ceil(n * multiplier - 0.5) / multiplierno bias in general but data with lots of ties can cause bias >>> import statistics >>> numbers = [-2.15, 1.45, -4.35, 12.75] >>> statistics.mean(numbers) 1.925 >>> statistics.mean(round_half_up(n, 1) for n in numbers) 1.975 >>> statistics.mean(round_half_down(n, 1) for n in numbers) 1.8749999999999996 Rounding Half Away From Zero
neither round_half_up() or round_half_down() function is symmetric
around zeroone way to introduce symmetry is to always round a tie away from zero
if n >= 0: rounded = round_half_up(n, decimals) else: rounded = round_half_down(n, decimals)a simpler way first take absolute value of n using abs() function then use round_half_up() to round the number then give the rounded number the same sign as n using math.copysign() function >>> import math >>> math.copysign(1, -2) -1.0implement the rounding half away from zero strategy # ... def round_half_away_from_zero(n, decimals=0): rounded_abs = round_half_up(abs(n), decimals) return math.copysign(rounded_abs, n)the round_half_away_from_zero() function rounds numbers the way most people tend to round numbers in everyday life round_half_away_from_zero() also eliminates rounding bias well in datasets with an equal number of positive and negative ties >>> numbers = [-2.15, 1.45, -4.35, 12.75] >>> import statistics >>> statistics.mean(numbers) 1.925 >>> statistics.mean(round_half_away_from_zero(n, 1) for n in numbers) 1.925 Rounding Half to Even
one way to mitigate rounding bias when rounding is to round ties to the nearest even
number at the desired precision
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
The Decimal Class | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
decimal module provides
>>> import decimal >>> decimal.getcontext() Context( prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999, capitals=1, clamp=0, flags=[], traps=[InvalidOperation, DivisionByZero, Overflow] )create a new Decimal object using a string as the argument >>> from decimal import Decimal >>> Decimal("0.1") Decimal('0.1')can create a decimal using a float but the exact decimal representation can be lost >>> Decimal(0.1) Decimal('0.1000000000000000055511151231257827021181583404541015625')can round a Decimal with the .quantize() method or with the round() built-in function >>> Decimal("1.65").quantize(Decimal("1.0")) Decimal('1.6') >>> round(Decimal("1.65"), 1) Decimal('1.6')the Decimal("1.0") argument in .quantize() determines the number of decimal places to round the number 1.0 has one decimal place, the number 1.65 rounds to a single decimal place the default rounding strategy is rounding half to even, so the result is 1.6 decimal module automatically takes care of rounding after performing arithmetic preserving significant digits >>> decimal.getcontext().prec = 2 >>> Decimal("1.23") + Decimal("2.32") Decimal('3.6')To change the precision call decimal.getcontext() and set the .prec attribute .getcontext() returns a special Context object by reference is the current internal context containing the default parameters that the decimal module uses to change the default rounding strategy set the decimal.getcontext().rounding property to any one of several flags
the results of decimal.ROUND_CEILING aren't symmetric around zero >>> decimal.getcontext().rounding = decimal.ROUND_CEILING >>> round(Decimal("1.32"), 1) Decimal('1.4') >>> round(Decimal("-1.32"), 1) Decimal('-1.3')the decimal.ROUND_FLOOR strategy works just like the round_down() function the results of decimal.ROUND_FLOOR aren't symmetric around zero >>> decimal.getcontext().rounding = decimal.ROUND_FLOOR >>> round(Decimal("1.32"), 1) Decimal('1.3') >>> round(Decimal("-1.32"), 1) Decimal('-1.4')the decimal.ROUND_DOWN and decimal.ROUND_UP strategies have deceptive names both ROUND_DOWN and ROUND_UP are symmetric around zero the decimal.ROUND_DOWN strategy rounds numbers toward zero like the truncate() function decimal.ROUND_UP rounds everything away from zero >>> decimal.getcontext().rounding = decimal.ROUND_DOWN >>> round(Decimal("1.32"), 1) Decimal('1.3') >>> round(Decimal("-1.32"), 1) Decimal('-1.3') >>> decimal.getcontext().rounding = decimal.ROUND_UP >>> round(Decimal("1.32"), 1) Decimal('1.4') >>> round(Decimal("-1.32"), 1) Decimal('-1.4')the decimal.ROUND_HALF_UP method rounds everything to the nearest number breaks ties by rounding away from zero decimal.ROUND_HALF_UP works just like round_half_away_from_zero() and not like round_half_up() >>> decimal.getcontext().rounding = decimal.ROUND_HALF_UP >>> round(Decimal("1.35"), 1) Decimal('1.4') >>> round(Decimal("-1.35"), 1) Decimal('-1.4')decimal.ROUND_HALF_DOWN strategy that breaks ties by rounding toward zero >>> decimal.getcontext().rounding = decimal.ROUND_HALF_DOWN >>> round(Decimal("1.35"), 1) Decimal('1.3') >>> round(Decimal("-1.35"), 1) Decimal('-1.3')decimal.ROUND_05UP >>> decimal.getcontext().rounding = decimal.ROUND_05UP >>> round(Decimal("1.38"), 1) Decimal('1.3') >>> round(Decimal("1.35"), 1) Decimal('1.3') >>> round(Decimal("-1.35"), 1) Decimal('-1.3')above it appears decimal.ROUND_05UP rounds everything toward zero this is exactly how decimal.ROUND_05UP works unless the result of rounding ends in a 0 or 5 in that case the number gets rounded away from zero >>> round(Decimal("1.49"), 1) Decimal('1.4') >>> round(Decimal("1.51"), 1) Decimal('1.6') |