Python Topics : Unit Testing
Introduction to Unit Testing
What is Unit Testing
a unit test is an automated test which
  1. verifies a small piece of code called a unit
    a unit can be a function or a method of a class
  2. runs very fast
  3. executes in an isolated manner
the idea of unit testing is to check each small piece of a program to ensure it works properly
it's different from integration testing which tests that different parts of the program work well together
the goal of a unit test is to find bugs
a unit test can help refactor existing code to make it more testable and robust
Python provides a built-in module unittest which allows carrying out unit testing effectively

xUnit Terminology
the unittest module follows the xUnit philosophy
it has the following major components

TermMeaning
System under testa function, a class, a method which will be tested.
Test case class (unittest.TestCase)the base class for all the test classes
Test fixturesmethods which execute before and after a test method executes
Assertionsmethods that check the behavior of the component being tested
Test suitea group of related tests executed together
Test runnera program that runs the test suite

unittest Example
Square class that has a property called length and a method area() which returns the area of the square
square.py module

class Square:
    def __init__(self, length) -> None:
        self.length = length

    def area(self):
        return self.length * self.length
to test the Square class create a file named test_square.py
import unittest
from square import Square

class TestSquare(unittest.TestCase):
    def test_area(self):
        square = Square(10)
        area = square.area()
        self.assertEqual(area, 100)

if __name__ == '__main__':
    unittest.main(verbosity=2)
the unit test first imports the required mdoule
the TestSquare class inherits from unittest.TestCase
to test the area() method, add a method called test_area() to the TestSquare class
In the test_area() method
  1. create a new instance of the Square class and initialize its radius with the number 10
  2. call the area() method that returns the area of the square
  3. call the assertEqual() method to check if the result returned by the area() method is equal to an expected area (100)
to get more detailed information on the test result, pass the verbosity argument with the value 2 to the unittest.main() function

the output of the test

test_area (__main__.TestSquare) ... ok

----------------------------------------------------------------------
Ran 1 test in 0.001s

OK
the output indicates that one test has passed denoted by the dot (.)
if a test failed, the letter F would be used instead of the dot (.)

Running Tests without Calling unittest.main() Function
remove the if block which calls the unittest.main() function

import unittest
from square import Square

class TestSquare(unittest.TestCase):
    def test_area(self):
        square = Square(10)
        area = square.area()
        self.assertEqual(area, 100)
execute the test using
python -m unittest -v
command discovers all the test classes whose names start with Test* located in the test_* file and executes the test methods that start with test*
the -m option stands for the module
the -v option stands for verbosity
output
test_area (test_square.TestSquare) ... ok
 

----------------------------------------------------------------------
Ran 1 tests in 0.000s

OK
Testing Expected Exceptions
the Square constructor accepts a length parameter which should be either an int or float
if the parameter is of a different type the c'tor should raise a TypeError exception
import unittest
from square import Square

class TestSquare(unittest.TestCase):
    def test_area(self):
        square = Square(10)
        area = square.area()
        self.assertEqual(area, 100)

    def test_length_with_wrong_type(self):
        with self.assertRaises(TypeError):
            square = Square('10')
output
test_area (test_square.TestSquare) ... ok
test_length_with_wrong_type (test_square.TestSquare) ... FAIL

======================================================================
FAIL: test_length_with_wrong_type (test_square.TestSquare)
----------------------------------------------------------------------
Traceback (most recent call last):
  File "D:\python-unit-testing\test_square.py", line 13, in test_length_with_wrong_type
    with self.assertRaises(TypeError):
AssertionError: TypeError not raised

----------------------------------------------------------------------
Ran 2 tests in 0.001s
the test_length_with_wrong_type function fails because the Square c'tor does not raise an exception
the c'tor does no type checking
change the c'tor
class Square:
    def __init__(self, length) -> None:
        if type(length) not in [int, float]:
            raise TypeError('Length must be an integer or float')
        if length < 0:
            raise ValueError('Length must not be negative')

        self.length = length

    def area(self):
        return self.length * self.length
Test Fixtures
two types of Test Fixtures
  • module-level fixtures - test_my_module.py
  • class-level fixtures - setUpModule() and tearDownModule()
Module-level Fixture
the setUpModule() function runs before all test methods in the test module
the tearDownModule() function runs after all test methods in the test module

import unittest

def setUpModule():
    print('Running setUpModule')

def tearDownModule():
    print('Running tearDownModule')

class TestMyModule(unittest.TestCase):
    def test_case_1(self):
        self.assertEqual(5+5, 10)
    def test_case_2(self):
        self.assertEqual(1+1, 2)
output
Running setUpModule
test_case_1 (test_my_module.TestMyModule) ... ok
test_case_2 (test_my_module.TestMyModule) ... ok
Running tearDownModule

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK
Class-level Fixtures
the setUpModule() function runs before all test methods in the class
the tearDownModule() function runs after all test methods in the class
import unittest

def setUpModule():
    print('Running setUpModule')

def tearDownModule():
    print('Running tearDownModule')

class TestMyModule(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        print('Running setUpClass')

    @classmethod
    def tearDownClass(cls):
        print('Running tearDownClass')

    def test_case_1(self):
        self.assertEqual(5+5, 10)

    def test_case_2(self):
        self.assertEqual(1+1, 2)
added the class methods: setUpClass() and tearDownClass() to the TestMyModule class
output
Running setUpModule
Running setUpClass
test_case_1 (test_my_module.TestMyModule) ... ok
test_case_2 (test_my_module.TestMyModule) ... ok
Running tearDownClass
Running tearDownModule

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK
Method-level fixtures
setUp() runs before every test method in the test class
tearDown() runs after every test method in the test class
import unittest

def setUpModule():
    print('Running setUpModule')

def tearDownModule():
    print('Running tearDownModule')


class TestMyModule(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        print('Running setUpClass')

    @classmethod
    def tearDownClass(cls):
        print('Running tearDownClass')

    def setUp(self):
        print('')
        print('Running setUp')

    def tearDown(self):
        print('Running tearDown')

    def test_case_1(self):
        print('Running test_case_1')
        self.assertEqual(5+5, 10)

    def test_case_2(self):
        print('Running test_case_2')
        self.assertEqual(1+1, 2)
the output
Running setUpModule
Running setUpClass
test_case_1 (test_my_module.TestMyModule) ...
Running setUp
Running test_case_1
Running tearDown
ok
test_case_2 (test_my_module.TestMyModule) ...
Running setUp
Running test_case_2
Running tearDown
ok
Running tearDownClass
Running tearDownModule

----------------------------------------------------------------------
Ran 2 tests in 0.002s

OK
test fixtures example
create a module named bank_account.py
add classes named BankAccount and InsufficientFund classes to the file
class InsufficientFund(Exception):
    pass

class BankAccount:
    def __init__(self, balance: float) -> None:
        if balance < 0:
            raise ValueError('balance cannot be negative')
        self._balance = balance

    @property
    def balance(self) -> float:
        return self._balance

    def deposit(self, amount: float) -> None:
        if amount <= 0:
            raise ValueError('The amount must be positive')

        self._balance += amount

    def withdraw(self, amount: float) -> None:
        if amount <= 0:
            raise ValueError('The withdrawal amount must be more than 0')

        if amount > self._balance:
            raise InsufficientFund('Insufficient ammount for withdrawal')

        self._balance -= amount
create a module named test_bank_account.py
add the TestBankAccount class to the module
import unittest
from bank_account import BankAccount, InsufficientFund

class TestBankAccount(unittest.TestCase):
    def setUp(self) -> None:
        self.bank_account = BankAccount(100)

    def test_deposit(self):
        self.bank_account.deposit(100)
        self.assertEqual(self.bank_account.balance, 200)

    def test_withdraw(self):
        self.bank_account.withdraw(50)
        self.assertEqual(self.bank_account.balance, 50)

    def tearDown(self) -> None:
        self.bank_account = None
Skipping Tests
the unittest module allows skipping a test method or a test class
  1. use the @unittest.skip() decorator.
  2. call the skipTest() method of the TestCase class
  3. raise the SkipTest exception
Skipping a test method examples
example uses the @unittest.skip() decorator to skip the test_case_2() method unconditionally
import unittest

class TestDemo(unittest.TestCase):
    def test_case_1(self):
        self.assertEqual(1+1, 2)

    @unittest.skip('Work in progress')
    def test_case_2(self):
        pass
output
test_case_1 (test_skipping.TestDemo) ... ok
test_case_2 (test_skipping.TestDemo) ... skipped 'Work in progress'

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK (skipped=1)
can also call skipTest() in a test method to skip it
import unittest

class TestDemo(unittest.TestCase):
    def test_case_1(self):
        self.assertEqual(1+1, 2)

    def test_case_2(self):
        self.skipTest('Work in progress')
output
test_case_1 (test_skipping.TestDemo) ... ok
test_case_2 (test_skipping.TestDemo) ... skipped 'Work in progress'

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK (skipped=1)
can also raise the SkipTest exception
import unittest

class TestDemo(unittest.TestCase):
    def test_case_1(self):
        self.assertEqual(1+1, 2)

    def test_case_2(self):
        raise unittest.SkipTest('Work in progress')
output
test_case_1 (test_skipping.TestDemo) ... ok
test_case_2 (test_skipping.TestDemo) ... skipped 'Work in progress'

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK (skipped=1)
Skipping a test class examples
to skip a test class use the @unittest.skip() decorator at the class level
import unittest

@unittest.skip('Work in progress')
class TestDemo(unittest.TestCase):
    def test_case_1(self):
        self.assertEqual(1+1, 2)

    def test_case_2(self):
        self.assertIsNotNone([])
output
test_case_1 (test_skipping.TestDemo) ... skipped 'Work in progress'
test_case_2 (test_skipping.TestDemo) ... skipped 'Work in progress'

----------------------------------------------------------------------
Ran 2 tests in 0.000s

OK (skipped=2)
Skipping a test with a condition
to skip a test conditionally use the @unittest.skipIf() decorator
syntax
@unittest.skipIf(condition, reason)
will skip the test if the condition is true
will display the reason for skipping the test in the test result
import unittest
from sys import platform

class TestDemo(unittest.TestCase):
    def test_case_1(self):
        self.assertEqual(1+1, 2)

    @unittest.skipIf(platform.startswith("win"), "Do not run on Windows")
    def test_case_2(self):
        self.assertIsNotNone([])
in this example, we skip the test_case_2() method if the current platform is windows
to get the current platform where the test is running use the sys.platform property
test output
test_case_1 (test_skipping.TestDemo) ... ok
test_case_2 (test_skipping.TestDemo) ... skipped 'Do not run on Windows'

----------------------------------------------------------------------
Ran 2 tests in 0.001s

OK (skipped=1)
the @unittest.skipUnless skips a test uncles a condition is true
syntax
@unittest.skipUnless(condition, reason)
Organizing Code & Running unittest
Organizing code
with a few modules can create test modules and place them within the same directory as the module being tested
may have many modules organized into packages
in that case it's important to keep the development code and test code more organized
it's a good practice to keep the development code and the test code in separate directories
should place the test code in a directory called test to make it obvious

sample project has this structure

D:\python-unit-testing
├── shapes
|  ├── circle.py
|  ├── shape.py
|  └── square.py
└── test
   ├── test_circle.py
   ├── test_square.py
   └── __init__.py
with the structure in place add shape.py to the shapes directory
from abc import ABC, abstractmethod

class Shape(ABC):
    @abstractmethod
    def area() -> float:
        pass
add circle.py
import math
from .shape import Shape

class Circle(Shape):
    def __init__(self, radius: float) -> None:
        if radius < 0:
            raise ValueError('The radius cannot be negative')

        self._radius = radius

    def area(self) -> float:
        return math.pi * math.pow(self._radius, 2)
add square.py
import math
from .shape import Shape

class Square(Shape):
    def __init__(self, length: float) -> None:
        if length < 0:
            raise ValueError('The length cannot be negative')
        self._length = length

    def area(self) -> float:
        return math.pow(self._length, 2)
next add the two test files to the test directory
test_circle.py
import unittest
import math

from shapes.circle import Circle
from shapes.shape import Shape

class TestCircle(unittest.TestCase):
    def test_circle_instance_of_shape(self):
        circle = Circle(10)
        self.assertIsInstance(circle, Shape)

    def test_create_circle_negative_radius(self):
        with self.assertRaises(ValueError):
            circle = Circle(-1)

    def test_area(self):
        circle = Circle(2.5)
        self.assertAlmostEqual(circle.area(), math.pi * 2.5*2.5)
test_square.py
import unittest

from shapes.square import Square
from shapes.shape import Shape

class TestSquare(unittest.TestCase):

    def test_create_square_negative_length(self):
        with self.assertRaises(ValueError):
            square = Square(-1)

    def test_square_instance_of_shape(self):
        square = Square(10)
        self.assertIsInstance(square, Shape)

    def test_area(self):
        square = Square(10)
        area = square.area()
        self.assertEqual(area, 100)
finally add an empty __init__.py file to the test folder

Running unit tests
to run all the tests use the following command from within the python-unit-testing folder

python -m unittest discover -v
discover is a subcommand which finds all the tests in the project
output
test_area (test_circle.TestCircle) ... ok
test_circle_instance_of_shape (test_circle.TestCircle) ... ok
test_create_circle_negative_radius (test_circle.TestCircle) ... ok
test_area (test_square.TestSquare) ... ok
test_create_square_negative_length (test_square.TestSquare) ... ok
test_square_instance_of_shape (test_square.TestSquare) ... ok

----------------------------------------------------------------------
Ran 6 tests in 0.002s

OK
to run a single test module the command syntax is
python -m unittest test_package.test_module -v
to execute all the tests in the test_circle module
python -m unittest test.test_circle -v
test output
test_area (test.test_circle.TestCircle) ... ok
test_circle_instance_of_shape (test.test_circle.TestCircle) ... ok     
test_create_circle_negative_radius (test.test_circle.TestCircle) ... ok

---------------------------------------------------------------------- 
Ran 3 tests in 0.000s

OK
Running a single test class
a test module can contain multiple classes
to run a single test class in such a module the syntax is
python -m unittest test_package.test_module.TestClass -v
to run the tests for the TestSquare class use the command
python -m unittest test.test_circle.TestCircle -v
output
test_area (test.test_square.TestSquare) ... ok
test_create_square_negative_length (test.test_square.TestSquare) ... ok
test_square_instance_of_shape (test.test_square.TestSquare) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.001s

OK
Running a single test method
to run a single test method in a test class the syntax is
python -m unittest test_package.test_module.TestClass.test_method -v
the following command tests the test_area() method of the TestCircle class
python -m unittest test.test_circle.TestCircle.test_area -v
output
test_area (test.test_circle.TestCircle) ... ok

----------------------------------------------------------------------
Ran 1 test in 0.001s

OK
assert Methods
the TestCase class of the unittest module provides you with a large number of assert methods to test
the following table shows the most commonly used assert methods
all of these methods have an optional msg parameter whose type is a string
the msg will be displayed in the test result if the test fails

MethodChecks
assertEqual(x, y, msg=None)x == y
assertNotEqual(x,y,msg=None)x != y
assertTrue(x, msg=None)bool(x) is True
assertFalse(x, msg=None)bool(x) is False
assertIs(x, y , msg=None)x is y
assertIsNot(x, y, msg=None)x is not y
assertIsNone(x, msg=None)x is None
assertIsNotNone(x , msg=None)x is not None
assertIn(x, y, msg=None)x in y
assertNotIn(x, y, msg=None)x not in y
assertIsInstance(x, y, msg=None)isinstance(x, y)
assertNotIsInstance(x, y, msg=None)not isinstance(x, y)

the following assert methods check the exceptions, warnings, and log messages

MethodChecks
assertRaises(exc, fun, *args, **kwds) fun(*args, **kwds) raises exc
assertRaisesRegex(exc, r, fun, *args, **kwds) fun(*args, **kwds) raises exc and the message matches regex r
assertWarns(warn, fun, *args, **kwds) fun(*args, **kwds) raises warn
assertWarnsRegex(warn, r, fun, *args, **kwds) fun(*args, **kwds) raises warn and the message matches regex r
assertLogs(logger, level) the with block logs on logger with a minimum level
assertNoLogs(logger, level) the with block does not log on logger with a minimum level

the following table shows the assert methods that perform more specific checks

MethodChecks
assertAlmostEqual(x, y)round(x-y, 7) == 0
assertNotAlmostEqual(x, y)round(x-y, 7) != 0
assertGreater(x, y)x > y
assertGreaterEqual(x, y)x >= y
assertLess(x, y)x < y
assertLessEqual(x, y)x <= y
assertRegex(s, r)r.search(s)
assertNotRegex(s, r)not r.search(s)
assertCountEqual(x, y)x and y have the same number of elements in the same number.

methods of TestClass type

assertEqual()
assertEqual() tests if two values are equal
if the first value does not equal the second value, the test will fail
the msg is optional
if the msg is provided, it'll be shown on the test result if the test fails
syntax
assertEqual(first, second, msg=None)
the assertNotEqual() method tests if two values are not equal
if the first is equal to the second, the test will fail
otherwise, it'll pass
syntax
assertNotEqual(first, second, msg=None)
assertNotEqual()
the assertNotEqual() method tests if two values are not equal
if the first is equal to the second, the test will fail
otherwise, it'll pass
syntax
assertNotEqual(first, second, msg=None)
assertAlmostEqual()
the assertAlmostEqual() is a method of the TestCase class of the unittest module
the assertAlmostEqual() test if two values are approximately equal by doing the following
  • First, compute the difference
  • Second, round to the given number to decimal places (default 7)
  • Third, compare the rounded value to zero
syntax
assertAlmostEqual(first, second, places=7, msg=None, delta=None)
the method uses places (or decimal places) to round the difference before comparing it to zero
places are not significant digits
if a delta is passed instead of places then the difference between first and second must be less or equal to (or greater than) delta
cano use either places or delta
trying to pass both arguments will result with a TypeError

assertNotAlmostEqual()
the assertNotAlmostEqual() method is the opposite of the assertAlmostEqual() method
tests if two values are not approximately equal

assertIs()
the assertIs() allows testing if two objects are the same
syntax
assertIs(first, second, msg=None)
if the first and second reference the same object, the test will pass
otherwise, it'll fail
the msg is optional
it's displayed in the test result in case the test fails

assertIsNot()
the assertIsNot() tests if the first object is not the same as the second one
syntax
assertIsNot(first, second, msg=None)
assertIsInstance()
the assertIsInstance() is a method of the TestCase class of the unittest module
method tests if an object is an instance of a class
syntax
assertIsInstance(obj, cls, msg=None)
in the syntax
  • obj is the object to test
  • cls is a class or a tuple of classes
  • msg is an optional string that will be displayed if the obj is not an instance of the cls class
internally uses the isinstance() function to check if the object is an instance of the cls class
if the cls is not the class of the obj but the base class of the class of the obj, the test will also pass
since the object class is the base class of all classes, the assertIsInstance(obj, object) will always pass

assertIsNotInstance()
the assertIsNotInstance() is the opposite of the assertIsInstance() method
tests if an object is not an instance of a class
syntax
assertNotIsInstance(obj, cls, msg=None)
assertIsNone()
the assertIsNone() is a method of the TestCase class of the unittest module
tests if an expression is None
syntax
assertIsNone(expr, msg=None)
if the expr is None, the test passes
otherwise, the test will fail
the msg is optional
it'll be displayed in the test result if the test fails

assertIsNotNone()
the assertIsNotNone() is opposite of the assertIsNone() method
method tests if a variable is not None
syntax
assertIsNotNone(expr, msg=None)
assertTrue()
the assertTrue() is a method of the TestCase class in the unittest module
method tests if an expression is True
syntax
assertTrue(expr, msg=None)
if the expr is True, the test passes
otherwise, the test fails. the msg is optional
if passed the msg parameter, it'll be displayed when the test fails
method is equivalent to
bool(expr) is True
not equivalent to the following
expr is True
assertFalse()
opposite of assertTrue()

assertIn()
the assertIn() is a method of the TestCase class of the unittest module
method tests if a member is in a container
syntax
assertIn(member, container, msg=None)
if the member is in the container, the test will pass
otherwise, it'll fail
the msg is optional
it'll be displayed in the test result when the test fails
internally, the assertIn() method uses the in operator to check
member in container
assertNotIn()
the assertNotIn() method is the opposite of the assertIn() method
method tests if a member is not in a container
assertNotIn(member, container, msg=None)
Test Doubles - Mock
Introduction to Python unittest Mock class
mocks simulate the behaviors of real objects
to test an object that depends on other objects in an isolated manner, use mock objects to mock the real objects

to mock objects use the unittest.mock module
module provides the Mock class which allows mocking other objects

also provides the MagicMock class that is a subclass of the Mock class
the MagicMock class has the implementations of all the dunder methods e.g., __str__ and __repr__

simple example

from unittest.mock import Mock

# create a new mock object
mock = Mock()

# mock the api function
mock.api.return_value = {
    'id': 1,
    'message': 'hello'
}
# call the api function
print(mock.api)
print(mock.api())
output
<Mock id='1830094470496'>
<Mock name='mock.api' id='1830100086416'>
{'id': 1, 'message': 'hello'}
the output shows two different mocks
if assigned a property which doesn't exist on the Mock object, Python will return a new mock object
very dynamic

When to use mock
cases where using mocks should be considered

  • system calls
  • networking
  • I/O operations
  • clocks & time, timezones
  • where results are unpredictable
Why use mocks
benefits of mocks
  • speeds up the test
  • excludes external redundancies
  • make unpredictable results predictable
Python Unittest Mock example
odometer.py
from random import randint

def speed():
    return randint(40, 120)

def alert():
    s = speed()
    if s < 60 or s > 100:
        return True
    return False
in the sensor.py module
  • speed() returns the current speed of a vehicle
    it returns a random value between 40 and 120
    in the real world, the function would read the data from the odometer
  • alert() function returns true if the current speed is lower than 60 km/ and higher than 120 km/h
    function uses the speed() function to get the current speed
    function returns true if the current speed is lower than 60 km/ and higher than 120 km/h
testodometer.py
import unittest
from unittest.mock import Mock
import odometer

class TestOdometer(unittest.TestCase):
    def test_alert_normal(self):
        odometer.speed = Mock()
        odometer.speed.return_value = 70
        self.assertFalse(odometer.alert())

    def test_alert_overspeed(self):
        odometer.speed = Mock()
        odometer.speed.return_value = 100
        self.assertFalse(odometer.alert())

    def test_alert_underspeed(self):
        odometer.speed = Mock()
        odometer.speed.return_value = 59
        self.assertTrue(odometer.alert())
run the test using
python -m unittest test_odometer.py -v
output
test_alert_normal (test_odometer.TestOdometer) ... ok
test_alert_overspeed (test_odometer.TestOdometer) ... ok
test_alert_underspeed (test_odometer.TestOdometer) ... ok

----------------------------------------------------------------------
Ran 3 tests in 0.001s

OK
Test Doubles - Patch()
Introduction to the Python patch

the unittest.mock module has a patch() which allows temporarily replacing a target with a mock object
a target can be a function, a method, or a class
it's a string with the following format
'package.module.className'
to use the patch() correctly, need to understand two important steps
  • identify the target
  • how to call patch()
Identifying the target
to identify a target
  • the target must be importable
  • patch the target where it is used, not where it comes from
Calling patch
three ways to call patch()
  • decorators for a function or a class
  • context manager
  • manual start/stop
when using patch() as a decorator of a function or class, inside the function or class the target is replaced with a new object
if using patch in a context manager, inside the with statement, the target is replaced with a new object
in both cases when the function or the with statement exits, the patch is undone

Python patch examples
total.py
def read(filename):
    """ read a text file and return a list of numbers """
    with open(filename) as f:
        lines = f.readlines()
        return [float(line.strip()) for line in lines]

def calculate_total(filename):
    """ return the sum of numbers in a text file """
    numbers = read(filename)
    return sum(numbers)
the read() function reads a text file, converts each line into a number, and returns a list of numbers
[1, 2, 3]
to test calculate_total(), can create a test_total_mock.py module and mock the read() function as follows
import unittest
from unittest.mock import MagicMock
import total

class TestTotal(unittest.TestCase):
    def test_calculate_total(self):
        total.read = MagicMock()
        total.read.return_value = [1, 2, 3]
        result = total.calculate_total('')
        self.assertEqual(result, 6)
to run the test use the command
python -m unittest test_total_mock.py -v
output
test_calculate_total (test_total_mock.TestTotal) ... ok

----------------------------------------------------------------------
Ran 1 test in 0.001s

OK
Using patch() as a decorator
test_total_with_patch_decorator.py tests the total.py module using the patch() as a function decorator
import unittest
from unittest.mock import patch
import total

class TestTotal(unittest.TestCase):
    @patch('total.read')
    def test_calculate_total(self, mock_read):
        mock_read.return_value = [1, 2, 3]
        result = total.calculate_total('')
        self.assertEqual(result, 6)
total.calculate_total() calls total.read() to obtain the list of numbers
the total.read() function is mocked so total.calculate_total() call the mock for the numbers
the argument to total.calculate_total() is the filename for read() to read
because read() is mocked the filename is never used
to run the test use the command
python -m unittest test_total_patch_decorator -v
Using patch() as a context manager
how to use the patch() as a context manager
import unittest
from unittest.mock import patch
import total

class TestTotal(unittest.TestCase):
    def test_calculate_total(self):
        # context manager
        with patch('total.read') as mock_read:
            mock_read.return_value = [1, 2, 3]
            result = total.calculate_total('')
            self.assertEqual(result, 6)
to run the test
result = total.calculate_total('')
self.assertEqual(result, 6)
Using patch() manually
test_total_patch_manual.py shows how to use patch() manually
import unittest
from unittest.mock import patch
import total

class TestTotal(unittest.TestCase):
    def test_calculate_total(self):
        # start patching
        patcher = patch('total.read')

        # create a mock object
        mock_read = patcher.start()

        # assign the return value
        mock_read.return_value = [1, 2, 3]

        # test the calculate_total
        result = total.calculate_total('')
        self.assertEqual(result, 6)

        # stop patching
        patcher.stop()
Test Doubles - Stubs
Introduction to the Python stubs
stubs are test doubles that return hard-coded values
primary purpose of stubs is to prepare a specific state of the system under test
stubs are beneficial because they return consistent results, making the test easier to write
can run tests even if the components that stubs are present are not working yet

need to develop an alarm system that monitors the temperature of a room
define a Sensor class in sensor.py

import random

class Sensor:
    @property
    def temperature(self):
        return random.randint(10, 45)
in the real world the sensor class needs to communicate with the hardware sensor
here Sensor.check() is a dummy class which returns a random integer

in alarm.py define an Alarm type which uses the a Sensor object

from sensor import Sensor

class Alarm:
    def __init__(self, sensor=None) -> None:
        self._low = 18
        self._high = 24
        self._sensor = sensor or Sensor()
        self._is_on = False

    def check(self):
        temperature = self._sensor.temperature
        if temperature < self._low or temperature > self._high:
            self._is_on = True

    @property
    def is_on(self):
        return self._is_on
Alarm.check() will sound if the sensor reports a temperature lower than 18C or greater than 24C

define the TestSensor in test_sensor.py module

class TestSensor:
    def __init__(self, temperature) -> None:
        self._temperature = temperature

    @property
    def temperature(self):
        return self._temperature
the temperature property returns a value specified in the TestSensor constructor

define a TestAlarm class in the test_alarm.py test module

import unittest
from alarm import Alarm
from test_sensor import TestSensor

class TestAlarm(unittest.TestCase):

    def test_is_alarm_off_by_default(self):
        alarm = Alarm()
        self.assertFalse(alarm.is_on)

    def test_check_temperature_too_high(self):
        alarm = Alarm(TestSensor(25))
        alarm.check()
        self.assertTrue(alarm.is_on)

    def test_check_temperature_too_low(self):
        alarm = Alarm(TestSensor(15))
        alarm.check()
        self.assertTrue(alarm.is_on)

    def test_check_normal_temperature(self):
        alarm = Alarm(TestSensor(20))
        alarm.check()
        self.assertFalse(alarm.is_on)
TestAlarm.test_is_alarm_off_by_default() uses the Sensor.temperature property
the other three test methods use the TestSensor type each with a pre-defined temperature

to run the tests use the command

python -m unittest -v
the output
test_check_normal_temperature (test_alarm.TestAlarm) ... ok
test_check_temperature_too_high (test_alarm.TestAlarm) ... ok
test_check_temperature_too_low (test_alarm.TestAlarm) ... ok
test_is_alarm_off_by_default (test_alarm.TestAlarm) ... ok

----------------------------------------------------------------------
Ran 4 tests in 0.001s

OK
Test Doubles - Using MagicMock to Create Stubs
Using MagicMock class to create stubs
Python provides the MagicMock object in the unittest.mock module
makes it simpler to create stubs

to create a stub for the Sensor class using the MagicMock class, pass the Sensor class to the MagicMock() constructor

mock_sensor = MagicMock(Sensor)
the mock_sensor is the new instance of the MagicMock class that mocks the Sensor class
by using the mock_sensor object, can set its property or call a method
mock_sensor.temperature = 25
the new version of the TestAlarm that uses the MagicMock class
import unittest
from unittest.mock import MagicMock
from alarm import Alarm
from sensor import Sensor

class TestAlarm(unittest.TestCase):

    def setUp(self):
        self.mock_sensor = MagicMock(Sensor)
        self.alarm = Alarm(self.mock_sensor)

    def test_is_alarm_off_by_default(self):
        alarm = Alarm()
        self.assertFalse(alarm.is_on)

    def test_check_temperature_too_high(self):
        self.mock_sensor.temperature = 25
        self.alarm.check()
        self.assertTrue(self.alarm.is_on)

    def test_check_temperature_too_low(self):
        self.mock_sensor.temperature = 15
        self.alarm.check()
        self.assertTrue(self.alarm.is_on)

    def test_check_normal_temperature(self):
        self.mock_sensor.temperature = 20
        self.alarm.check()
        self.assertFalse(self.alarm.is_on)
Using the patch() method
to make it easier to work with MagicMock, can use the patch() as a decorator
import unittest
from unittest.mock import patch
from alarm import Alarm

class TestAlarm(unittest.TestCase):

    @patch('sensor.Sensor')
    def test_check_temperature_too_low(self, sensor):
        sensor.temperature = 10
        alarm = Alarm(sensor)
        alarm.check()
        self.assertTrue(alarm.is_on)
above a @patch decorator is used on the test_check_temperature_too_low() method
in the decorator pass the sensor.Sensor as a target to patch
to run the test on TestAlarm.test_check_temperature_too_low() use the command
python -m unittest -v
output
test_check_temperature_too_low (test_alarm_with_patch.TestAlarm) ... ok

----------------------------------------------------------------------
Ran 1 test in 0.001s
Test Doubles - Mocking the requests Module
The scenario
For the demo purposes use a public API provided by jsonplaceholder.typicode.com
https://jsonplaceholder.typicode.com/
to make an API call, use the requests method to send an HTTP GET method to the following end-point
https://jsonplaceholder.typicode.com/albums/1
JSON data will be returned in the following format
{
  "userId": 1,
  "id": 1,
  "title": "quidem molestiae enim"
}
the requests module is not a built-in module
need to install it by running the following pip command
pip install requests
Making an API call using the requests module
define a new module named album.py with a function find_album_by_id() which returns an album by an id
import requests

def find_album_by_id(id):
    url = f'https://jsonplaceholder.typicode.com/albums/{id}'
    response = requests.get(url)
    if response.status_code == 200:
        return response.json()['title']
    else:
        return None
the response.json() returns a dictionary that represents the JSON data

Creating a test module
create a test_album.py test module which tests the functions in the album.py module
import unittest
from album import find_album_by_id

class TestAlbum(unittest.TestCase):
   pass
Mocking the requests module
the find_album_by_id() function has two dependencies
  • the get() method of the requests module
  • the Response object returned by the get() function
needed to test the find_album_by_id() function
  • mock the requests module and call the get() function (mock_requests)
  • mock the returned response object
to mock the requests module, can use the patch() function
consider the mock_requests is a mock of the requests module
the mock_requests.get() should return a mock for the response
to mock the response can use the MagicMock class
how to test the find_album_by_id() using the test_find_album_by_id_success() test method
import unittest
from unittest.mock import MagicMock, patch

from album import find_album_by_id


class TestAlbum(unittest.TestCase):

    @patch('album.requests')
    def test_find_album_by_id_success(self, mock_requests):
        # mock the response
        mock_response = MagicMock()
        mock_response.status_code = 200
        mock_response.json.return_value = {
            'userId': 1,
            'id': 1,
            'title': 'hello',
        }

        # specify the return value of the get() method
        mock_requests.get.return_value = mock_response

        # call the find_album_by_id and test if the title is 'hello'
        self.assertEqual(find_album_by_id(1), 'hello')

    @patch('album.requests')
    def test_find_album_by_id_fail(self, mock_requests):
        mock_response = MagicMock()
        mock_response.status_code = 400
        mock_requests.get.return_value = mock_response
        self.assertIsNone(find_album_by_id(1))
output
test_find_album_by_id_fail (test_album.TestAlbum) ... ok
test_find_album_by_id_success (test_album.TestAlbum) ... ok

----------------------------------------------------------------------
Ran 2 tests in 0.002s

OK
Test Coverage & Parameterized Tests
What is a test coverage
test coverage is a ratio between the number of lines executed by at least one test case and the total number of lines of the code base
test coverage = lines of code executed / total number of lines
also known as code coverage
test coverage is often used to assess the quality of a test suite
if the test coverage is low e.g., 5%, it is an indicator there's not testing enough
the reverse may not be true
100% test coverage is not a guarantee of a good test suite
a test suite with high coverage can still be of poor quality

Unittest coverage example
project structure to demo the unittest coverage
D:\python-unit-testing
├── shapes
|  ├── circle.py
|  ├── shape.py
|  └── square.py
└── test
   ├── test_circle.py
   ├── test_square.py
   └── __init__.py
two steps to generate a coverage report
  • run the coverage module to generate the coverage data
    python -m coverage run -m unittest
  • turn the coverage data into a report
    python -m coverage report
output
Name                  Stmts   Miss  Cover
-----------------------------------------
shapes\circle.py          9      0   100%
shapes\shape.py           4      0   100%
shapes\square.py          9      0   100%
test\__init__.py          0      0   100%
test\test_circle.py      14      0   100%
test\test_square.py      14      0   100%
-----------------------------------------
TOTAL                    50      0   100%
to generate the coverage report in HTML format, you change the option of the coverage module to HTML
python -m coverage html 
output
Wrote HTML report to htmlcov\index.html
output indicates the location of the HTML coverage report htmlcov\index.html under the project folder

Introduction to the unittest subtest context manager
create a new module called pricing.py and define a calculate() function
calculate() function calculates the net price from the price, tax, and discount
def calculate(price, tax=0, discount=0):
    return round((price - discount) * (1+tax), 2)
create the test_pricing.py test module to test the calculate() function
import unittest
from pricing import calculate

class TestPricing(unittest.TestCase):
    def test_calculate(self):
        pass
To test the calculate() function, multiple test cases are needed
  • has price with no tax and no discount
  • has price with tax but no discount
  • has price with no tax and discount
  • has price with tax and discount
could create a test module with multiple functions or define a single test method and supply test data from a list of cases
import unittest
from pricing import calculate

class TestPricing(unittest.TestCase):
    def test_calculate(self):
        items = (
            {'case': 'No tax, no discount', 'price': 10, 'tax': 0, 'discount': 0, 'net_price': 10},
            {'case': 'Has tax, no discount', 'price': 10, 'tax': 0.1, 'discount': 0, 'net_price': 10},
            {'case': 'No tax, has discount', 'price': 10, 'tax': 0, 'discount': 1, 'net_price': 10},
            {'case': 'Has tax, has discount', 'price': 10, 'tax': 0.1, 'discount': 1, 'net_price': 9.9},
        )

        for item in items:
            with self.subTest(item['case']):
                net_price = calculate(
                    item['price'],
                    item['tax'],
                    item['discount']
                )
                self.assertEqual(
                    net_price,
                    item['net_price']
                )
the problem with this approach is that the testing stops after the first failure
to resolve this, the unittest provides the subTest() context manager
import unittest
from pricing import calculate

class TestPricing(unittest.TestCase):
    def test_calculate(self):
        items = (
            {'case': 'No tax, no discount', 'price': 10, 'tax': 0, 'discount': 0, 'net_price': 10},
            {'case': 'Has tax, no discount', 'price': 10, 'tax': 0.1, 'discount': 0, 'net_price': 10},
            {'case': 'No tax, has discount', 'price': 10, 'tax': 0, 'discount': 1, 'net_price': 10},
            {'case': 'Has tax, has discount', 'price': 10, 'tax': 0.1, 'discount': 1, 'net_price': 9.9},
        )

        for item in items:
            with self.subTest(item['case']):
                net_price = calculate(
                    item['price'],
                    item['tax'],
                    item['discount']
                )
                self.assertEqual(
                    net_price,
                    item['net_price']
                )
command to run the tests
python -m unittest test_pricing -v
output
test_calculate (test_pricing.TestPricing) ... 
======================================================================     
FAIL: test_calculate (test_pricing.TestPricing) [Has tax, no discount]     
----------------------------------------------------------------------     
Traceback (most recent call last):
  File "D:\python-unit-testing\test_pricing.py", line 26, in test_calculate
    self.assertEqual(
AssertionError: 11.0 != 10

======================================================================     
FAIL: test_calculate (test_pricing.TestPricing) [No tax, has discount]     
----------------------------------------------------------------------     
Traceback (most recent call last):
  File "D:\python-unit-testing\test_pricing.py", line 26, in test_calculate
    self.assertEqual(
AssertionError: 9 != 10

----------------------------------------------------------------------     
Ran 1 test in 0.001s

FAILED (failures=2)
by using the subTest() context manager, the test didn't stop after the first failure
it shows a very detailed message after each failure so the case may be examined

The subTest() context manager syntax
the subTest() context manager syntax
def subTest(self, msg=_subtest_msg_sentinel, **params):
the subTest() returns a context manager
the optional message parameter identifies the closed block of the subtest returned by the context manage
if a failure occurs, the context manager will mark the test case as failed
then it resumes execution at the end of the enclosed block
allows further test code to be executed
index