Python Topics : Functional Programming
What Is Functional Programming?
a pure function is a function whose output value follows solely from its input values without any observable side effects
in functional programming, a program consists primarily of the evaluation of pure functions
computation proceeds by nested or composed function calls without changes to state or mutable data
advantages of functional programming
  • High level - describe the desired result rather than explicitly specifying the steps required
    single statements tend to be concise but pack a lot of punch
  • Transparent - the behavior of a pure function can be described by its inputs and outputs, without intermediary values
    eliminates the possibility of side effects and facilitates debugging
  • Parallelizable - Rroutines that don't cause side effects can more easily run in parallel with one another./li>
Python Support Functional Programming
to support functional programming, it's beneficial if a function in a given programming language can do these two things
  1. take another function as an argument
  2. return another function to its caller
functions in Python are objects
can assign a function to a variable
>>> def func():
...     print("I am function func()!")
...

>>> func()
I am function func()!

>>> another_name = func
>>> another_name()
I am function func()!
function composition - a function taking another function as an argument
>>> def inner():
...     print("I am function inner()!")
...

>>> def outer(function):
...     function()
...

>>> outer(inner)
I am function inner()!
a function can also specify another function as its return value
>>> def outer():
...     def inner():
...         print("I am function inner()!")
...     # Function outer() returns function inner()
...     return inner
...

>>> function = outer()
>>> function
<function outer.<locals>.inner at 0x7f18bc85faf0>
>>> function()
I am function inner()!

>>> outer()()
I am function inner()!
can call inner() indirectly through function with no argument
can also call it indirectly using the return value from outer() without intermediate assignment
outer()() is the same as outer(inner)
Defining an Anonymous Function With lambda
a lambda expression defines an anonymous function on the fly without having to give it a name
syntax
lambda <parameter_list>: <expression>
ComponentMeaning
lambdakeyword
<parameter_list>an optional comma-separated list of parameter names
:punctuation which separates <parameter_list> from <expression>
<expression> An expression usually involving the names in <parameter_list>
represents the lambda function's return value

the value of a lambda expression is a callable function, just like a function defined with the def keyword
takes arguments as specified by <parameter_list>
returns a value as indicated by <expression>

>>> lambda s: s[::-1]
<function <lambda> at 0x7fef8b452e18>

>>> callable(lambda s: s[::-1])
True
callable() returns True if the argument passed to it appears to be callable and False otherwise

the parameter list consists of the single parameter s
the expression s[::-1] is slicing syntax which returns the characters in s in reverse order
this lambda expression defines a temporary, nameless function

  • takes a string argument
  • returns the argument string with the characters reversed
the object created by a lambda expression is just like a standard function or any other object in Python
can assign it to a variable and then call the function using that name
>>> reverse = lambda s: s[::-1]
>>> reverse("I am a string")
'gnirts a ma I'
lambda function is no different than named function
to use a lambda function it's not necessary to assign it to a variable
>>> (lambda s: s[::-1])("I am a string")
'gnirts a ma I'
more complex examples
>>> (lambda x1, x2, x3: (x1 + x2 + x3) / 3)(9, 6, 6)
7.0
>>> (lambda x1, x2, x3: (x1 + x2 + x3) / 3)(1.4, 1.1, 0.5)
1.0
readabilty would be better if a function with a descriptive name was defined

advantage of using lambda expressions shows when using them for short andstraightforward logic

>>> animals = ["ferret", "vole", "dog", "gecko"]

>>> def reverse_len(s):
...     return -len(s)
...
>>> sorted(animals, key=reverse_len)
['ferret', 'gecko', 'vole', 'dog']
same functionality using a lambda expression
>>> animals = ["ferret", "vole", "dog", "gecko"]
>>> sorted(animals, key=lambda s: -len(s))
['ferret', 'gecko', 'vole', 'dog']
generally a lambda expression will have a parameter list but it's not required
can define a lambda function without parameters
the return value is not dependent on any input parameters
>>> forty_two_producer = lambda: 42
>>> forty_two_producer()
42
the return value from a lambda expression can only be one single expression
a lambda expression can't contain statements like assignment or return
can't contain control structures such as for, while, if, else, or def
can contain conditional expressions
>>> (lambda x: "even" if x % 2 == 0 else "odd")(2)
'even'
>>> (lambda x: "even" if x % 2 == 0 else "odd")(3)
'odd'
implicit tuple packing doesn't work with an anonymous lambda function
>>> (lambda x: x, x ** 2, x ** 3)(3)
<stdin>:1: SyntaxWarning: 'tuple' object is not callable;
⮑ perhaps you missed a comma?
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
the lambda expression above tries to return a tuple contain the numbers 3, 6 and 9

an explicitly return a tuple from a lambda function
denote the tuple with parentheses
can also return a list or a dictionary from a lambda function

# tuple
>>> (lambda x: (x, x ** 2, x ** 3))(3)
(3, 9, 27)
# list
>>> (lambda x: [x, x ** 2, x ** 3])(3)
[3, 9, 27]
# dict
>>> (lambda x: {1: x, 2: x ** 2, 3: x ** 3})(3)
{1: 3, 2: 9, 3: 27}
a lambda expression has its own local namespace
its parameter names don't conflict with identical names in the global namespace
a lambda expression can access variables in the global namespace but it can't modify them

If you find a need to include a lambda expression in a f-string, then need to enclose it in explicit parentheses

>>> print(f"- {lambda s: s[::-1]} -")
  File "<stdin>", line 1
    print(f"- {lambda s: s[::-1]} -")
                 ^^^^^^^^^
SyntaxError: f-string: lambda expressions are not allowed
⮑ without parentheses

>>> print(f"- {(lambda s: s[::-1])} -")
- <function <lambda> at 0x7f97b775fa60> -
>>> print(f"- {(lambda s: s[::-1])('I am a string')} -")
- gnirts a ma I -
Applying a Function to an Iterable With map()

with map() can apply a function to each element in an iterable in turn
returns an iterator which yields the results
a map() statement can often take the place of an explicit loop

Calling map() With a Single Iterable
can call map() with one iterable or with many iterables
the syntax for calling map() on a single iterable
map(<f>, <iterable>)
returns in iterator that yields the results of applying function to each element of

using reverse() as shown previously can use map() to apply reverse() to each element of the list

>>> animals = ["cat", "dog", "hedgehog", "gecko"]
>>> map(reverse, animals)
<map object at 0x7fd3558cbef0>
using a loop versus map()
>>> iterator = map(reverse, animals)
>>> for animal in iterator:
...     print(animal)
...
tac
god
gohegdeh
okceg

>>> iterator = map(reverse, animals)
>>> list(iterator)
['tac', 'god', 'gohegdeh', 'okceg']
the second snippet of code above can be combined as a single line
>>> list(map(lambda s: s[::-1], ["cat", "dog", "hedgehog", "gecko"]))
['tac', 'god', 'gohegdeh', 'okceg']
if the iterable contains items which aren't suitable for the specified function Python will raises an exception
>>> list(map(lambda s: s[::-1], ["cat", "dog", 3.14159, "gecko"]))
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "<stdin>", line 1, in <lambda>
TypeError: 'float' object is not subscriptable
Calling map() With Multiple Iterables
can use map() when passing more than one iterable after the function argument
syntax
map(<f>, <iterable₁>, <iterable₂>, ..., <iterableₙ>)
map() applies <f> to the elements in each <iterablei> in parallel
returns an iterator which yields the results
the number of <iterable₁> arguments specified to map() must match the number of arguments that <f> expects
<f> acts on the first item of each <iterablei>
that result becomes the first item that the return iterator yields
then <f> acts on the second item in each <iterablei> which becomes the second yielded item etc.
>>> def add_three(a, b, c):
...     return a + b + c
...

>>> list(map(add_three, [1, 2, 3], [10, 20, 30], [100, 200, 300]))
[111, 222, 333]
above uses the n-th element of each iterable as arguments to each call to add_three()

add_three() is short enough it can be used a the first argument to map()

>>> list(
...     map(
...         lambda a, b, c: a + b + c,
...         [1, 2, 3, 4],
...         [10, 20, 30, 40],
...         [100, 200, 300, 400],
...     )
... )
[111, 222, 333, 444]
Selecting Elements From an Iterable With filter()
filter() allows selecting/filtering items from an iterable based on evaluation of the given function
syntax
filter(<f>, <iterable>)
filter() applies the function to each element of the iterable
returns an iterator that yields all items for which <f> is truthy
filters out all items for which <f> is falsy
>>> def greater_than_100(x):
...     return x > 100
...
>>> list(filter(greater_than_100, [1, 111, 2, 222, 3, 333]))
[111, 222, 333]
below greater_than_100(x) is truthy if x > 100
>>> def greater_than_100(x):
...     return x > 100
...
>>> list(filter(greater_than_100, [1, 111, 2, 222, 3, 333]))
[111, 222, 333]
again can use lambda function directly
>>> list(filter(lambda x: x > 100, [1, 111, 2, 222, 3, 333]))
[111, 222, 333]
example using range()
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> def is_even(x):
...     return x % 2 == 0
...
>>> list(filter(is_even, range(10)))
[0, 2, 4, 6, 8]

>>> list(filter(lambda x: x % 2 == 0, range(10)))
[0, 2, 4, 6, 8]
can also use filter() with other data types
filter a list of animals so that only uppercase values remain
>>> animals = ["cat", "Cat", "CAT", "dog", "Dog", "DOG", "emu", "Emu", "EMU"]

>>> def all_caps(s):
...     return s.isupper()
...
>>> list(filter(all_caps, animals))
['CAT', 'DOG', 'EMU']

>>> list(filter(lambda s: s.isupper(), animals))
['CAT', 'DOG', 'EMU']
Reducing an Iterable to a Single Value With reduce()

reduce() applies a function to the items in an iterable two at a time, progressively combining them to produce a single result
reduce() is no longer a built-in function
it's still available for import from a standard-library module called functools

from functools import reduce
Calling reduce() With Two Arguments
reduce() call takes one function and one iterable
>>> def f(x, y):
...     return x + y
...

>>> from functools import reduce
>>> reduce(f, [1, 2, 3, 4, 5])
15
this is a rather roundabout way of summing the numbers in the list
the sum() function returns the sum of the numeric values in an iterable
>>> sum([1, 2, 3, 4, 5])
15
can concatenate strings in a list
>>> reduce(f, ["cat", "dog", "hedgehog", "gecko"])
'catdoghedgehoggecko'
more Pythonic way
>>> "".join(["cat", "dog", "hedgehog", "gecko"])
'catdoghedgehoggecko'
the factorial of the positive integer n is defined as
n! = 1 x 2 x ... x n
can implement a factorial function using reduce() and range()
>>> def multiply(x, y):
...     return x * y
...

>>> from functools import reduce

>>> def factorial_with_reduce(n):
...     return reduce(multiply, range(1, n + 1))
...

>>> factorial_with_reduce(4)  # 1 * 2 * 3 * 4
24
>>> factorial_with_reduce(6)  # 1 * 2 * 3 * 4 * 5 * 6
720
simpler to use factorial() function
>>> from math import factorial

>>> factorial(4)
24
>>> factorial(6)
720
find the maximum value in a list using built-in max() and reduce() functions
>>> max([23, 49, 6, 32])
49

>>> def greater(x, y):
...     return x if x > y else y
...

>>> from functools import reduce
>>> reduce(greater, [23, 49, 6, 32])
49
in each of the above examples the function passed to reduce() is a one-line function
in each case could have used a lambda function instead
>>> from functools import reduce

>>> reduce(lambda x, y: x + y, [1, 2, 3, 4, 5])
15
>>> reduce(lambda x, y: x + y, ["cat", "dog", "hedgehog", "gecko"])
'catdoghedgehoggecko'

>>> def factorial_with_reduce(n):
...     return reduce(lambda x, y: x * y, range(1, n + 1))
...
>>> factorial_with_reduce(4)
24
>>> factorial_with_reduce(6)
720

>>> reduce((lambda x, y: x if x > y else y), [23, 49, 6, 32])
49
Calling reduce() With an Initial Value
reduce() can be called with an additional arg which specifies an initial value for the reduction sequence
reduce(<f>, <iterable>, <initializer>)
<initializer> specifies an initial value for the combination in the first call to <f> the arguments are <initializer> and the first element of <iterable>
that result is then combined with the second element of <iterable> etc.
>>> def f(x, y):
...     return x + y
...

>>> from functools import reduce
>>> reduce(f, [1, 2, 3, 4, 5], 100)  # (100 + 1 + 2 + 3 + 4 + 5)
115

>>> # Using lambda:
>>> reduce(lambda x, y: x + y, [1, 2, 3, 4, 5], 100)
115
can do the same thing using the sum() function
>>> sum([1, 2, 3, 4, 5], start=100)
115
index